

NSX Multi-Hypervisor - OpenStack
Integration

NSX Multi-Hypervisor Neutron
Advanced Features Reference Guide

Document Version: Kilo2015.1.2

September 2015

© 2015, VMware 1

Table of Contents
Table of Contents
Overview
Related Documentation
Prerequisites

Supported Hypervisors
Configuration

Enabling the Plugin
Configuring the Plugin
Verifying the Configuration

Neutron DHCP Agent Requirements
Neutron Metadata Agent Requirements
OpenStack Nova Requirements

OpenStack Nova Requirements for XenServer
OpenStack Nova Requirements for KVM
OpenStack Nova Requirements for VMware ESXi 5.5

Configuring VM Network Connectivity
Multi-network topology with Logical Switches

Verifying your Network Topology
Topology with provider-supplied logical router
Topology with per-tenant logical router

Creating NSX Bridged Networks with Neutron
Bridged Networks with Neutron
Controlling how bridged networks are managed in the NSX backend

NSX L2 Gateways with Neutron
Tenant-provided network gateway

Create the network gateway devices (transport nodes)
Create the network gateway
Create a network, this creates a logical switch in NSX
Connect the network to the NSX L2 gateway

Gateways supplied by the service provider
Connecting a network to the default gateway:

Enabling NSX QoS with Neutron
Concepts
Configuring QoS with Neutron and Nova

Neutron Configuration
Nova Configuration

Configuring Default QoS with Neutron
Neutron Configuration

Port Security
Security Groups using Neutron API and NSX

Managing security groups and rules
Working with ports and security groups
Launching a VM without a security group

Openstack L3 APIs using NSX L3 Gateway
Prerequisites

© 2015, VMware 2

Managing Routers and SNAT
Creating a router
Attaching a Neutron subnet to a router
Detaching a subnet from a router
Configuring an external gateway on a router (SNAT)

Managing Floating IPs
Prerequisites
Create and associate a Floating IP
Associate a previously unassociated floating IP
Disassociate a floating IP
Sample workflow

Managing multiple NSX Gateway appliances
Metadata Support

Metadata Access Network
Metadata Host Route
Known Issues

User-configurable connectivity timeouts
Appendix A: Reference Network Architecture
Appendix B: Suggested upgrade workflow

© 2015, VMware 3

Overview

This document contains recommendations for constructing advanced
networking topologies for tenants in cloud installations built on OpenStack
Neutron and VMware NSX for Multi-Hypervisor (“NSX-mh”). The intended
audience is cloud administrators deploying OpenStack with NSX-mh network
virtualization.

Related Documentation

This document assumes the reader is already familiar with NSX-mh and
OpenStack concepts. To learn about these topics, please read:

● NSX User Guide, version 4.2, including the “NSX Technical Overview”

(explains NSX basics and API concepts) and the “NSX Architecture Guide”
(describes NSX Controller Cluster, NSX API, and data plane processing
done by OVS devices to implement logical networks).

● OpenStack Documentation - http://docs.openstack.org/
● OpenStack networking guide:

http://docs.openstack.org/networking-guide/
● OpenStack Neutron Administrator Guide –

http://docs.openstack.org/admin-guide-cloud/networking.html
● Openstack Neutron API reference -

http://docs.openstack.org/api/openstack-network/2.0/content/index.ht
ml

● OpenStack Neutron Plugin Specific Extensions -
http://docs.openstack.org/admin-guide-cloud/networking_adv-features.
html

Prerequisites

This document assumes the reader is already familiar with certain NSX and
OpenStack concepts. To learn more about these topics, please read the
Related Documentation Section, which provides links to additional
information covering the basics of NSX and OpenStack integration.

Supported Hypervisors

The OpenStack Neutron NSX-mh plugin supports the following hypervisors:
● XenServer hypervisor
● KVM based Linux hypervisor
● ESXi 5.5 or later hypervisor

© 2015, VMware 4

http://wiki.openstack.org/Documentation
http://wiki.openstack.org/Documentation
http://docs.openstack.org/networking-guide/
http://docs.openstack.org/admin-guide-cloud/networking.html
http://docs.openstack.org/api/openstack-network/2.0/content/index.html
http://docs.openstack.org/api/openstack-network/2.0/content/index.html
http://docs.openstack.org/admin-guide-cloud/networking_adv-features.html
http://docs.openstack.org/admin-guide-cloud/networking_adv-features.html

This guide assumes that all hypervisors have been configured according to the
NSX setup instructions and that Transport Node objects have been created on the
NSX Controller Cluster to represent these hypervisors. This can be done using
either the NSX Manager (browserbased user interface) or the NSX API.

Configuration

NSX integration in OpenStack Neutron is achieved by providing a Neutron
plugin implementation for NSX-mh. The plugin implementation adheres to
the Neutron plugin interface and realized operations via REST API calls to
NSX-mh. As such, the plugin driver is configured similar to all other Neutron
plugins; via one or more configuration files in the ini format.

Enabling the Plugin

To enable the plugin, the neutron.conf must be edited to specify the
NSX-mh plugin for the core_plugin property. The neutron.conf typically
resides in /etc/neutron/neutron.conf, but may reside elsewhere
depending on your installation.

For example, edit neutron.conf to define the core_plugin property as
follows to enable the NSX-mh neutron plugin:

[DEFAULT]
core_plugin = vmware

Note that Neutron has default per-tenant quotas on most resources. To
change them, edit the following section of the neutron.conf file if
necessary:

quota_driver = neutron.db.quota_db.DbQuotaDriver

After updating the neutron.conf, the NSX plugin specific properties should
be configured for your NSX installation environment as outlined in
subsequent sections.

Configuring the Plugin

NSX plugin specific properties are configured via the plugin’s nsx.ini file.
This file resides under the neutron configuration directory
NEUTRON_CONF_DIR/plugins/vmware/ where NEUTRON_CONF_DIR is the
configuration directory for OpenStack Neutron (for example
/etc/neutron/plugins/vmware/nsx.ini).

A complete reference of the plugin’s configuration options can be found on

© 2015, VMware 5

the OpenStack documentation site:
http://docs.openstack.org/kilo/config-reference/content/networking-plugin
-vmware.html

In addition, the nsx.ini file includes comments to describe each of the
properties available.

To get started with the plugin you need to minimally provide a default NSX
transport zone UUID via the default_tz_uuid property in nsx.ini. We
recommend that users create a dedicated transport zone for Openstack. From
the NSX Network Manager console, select Network Components, Transport
Layer, Transport Zones from the dropdown list.

The value for default_tz_uuid is from NSX, and can be retrieved using
NSX API or NSX Manager. This flag represents the NSX Transport Zone that
will be used to create tenant-specific private networks.

The value for default_l3_gw_service_uuid denotes an NSX L3 Gateway Service
that should be used for creating Logical L3 routers. Note that the NSX
Gateway must use the same transport connector type as specified by the
default_transport_type setting in the nsx.ini file. The default transport type
is stt, other available options are gre, ipsec_gre, ipsec_stt, and
bridge.

You’ll also need to provide values for the nsx_user, nsx_password and
nsx_controllers properties within the configuration file. These values
define the NSX controller(s) and credentials the plugin should use when
creating connections to NSX.

If you’re editing this file while the Neutron service is already running, you
must restart the Neutron service for the configuration changes to take effect
(note this may cause service interruption for active neutron users).

For example on Ubuntu:

$ sudo service neutronserver restart

Verifying the Configuration

The NSX Neutron plugin includes the command
neutronchecknsxconfig which allows you to verify the NSX
configuration for Neutron.

For example:

$ neutronchecknsxconfig /etc/neutron/plugins/vmware/nsx.ini

All configuration check steps should indicate PASS to indicate the integrity of

© 2015, VMware 6

http://docs.openstack.org/juno/config-reference/content/networking-plugin-vmware.html
http://docs.openstack.org/juno/config-reference/content/networking-plugin-vmware.html

basic Neutron configuration.

Neutron DHCP Agent Requirements

If you are planning to run the Neutron DHCP agent to provide DHCP services
to your virtual machines, ensure that Open vSwitch is installed on every
system which is running the DHCP agent. Each host running the DHCP agent
(and Open vSwitch) should also be added to NSX as a transport node.

A sample DHCP agent configuration snippet is shown below. Note that the
DHCP agent’s configuration file is typically located at
NEUTRON_CONF_DIR/dhcp_agent.ini where NEUTRON_CONF_DIR the
configuration directory for neutron. This is typically /etc/neutron/ on
many installations.

Sample dhcp_agent.ini snippet:

[DEFAULT]
enable_metadata_network = True
enable_isolated_metadata = True
ovs_use_veth = True
use_namespaces = True
interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver
dhcp_driver = neutron.agent.linux.dhcp.Dnsmasq

Neutron Metadata Agent Requirements

A sample metadata agent configuration snippet is shown below. Note that the
metadata agent’s configuration file is usually located at
NEUTRON_CONF_DIR/metadata_agent.ini where NEUTRON_CONF_DIR is
the configuration directory for neutron. This is typically /etc/neutron/ on
many installations.

[DEFAULT]
auth_url = http://<keystonehost>:35357/v2.0
auth_region = <region>
admin_tenant_name = <tenant_name>
admin_user = <user>
admin_password = <password>
IP address used by Nova metadata server
nova_metadata_ip = <ip of novametadataserver>

TCP Port used by Nova metadata server
nova_metadata_port = 8775

OpenStack Nova Requirements

© 2015, VMware 7

OpenStack nova must be configured to leverage Neutron from a networking
perspective. In particular the nova.conf must be updated on each node that
runs any nova service (e.g. novaapi, novascheduler, novacompute,
etc.). The default location for nova.conf is NOVA_CONF_DIR/nova.conf,
typically /etc/nova/nova.conf on many installations.

The nova.conf snippet below illustrates how to setup neutron as the
networking service for nova:

[DEFAULT]
network_api_class=nova.network.neutronv2.api.API
firewall_driver=nova.virt.firewall.NoopFirewallDriver
security_group_api=neutron

[neutron]
admin_username=<username>
admin_password=<password>
admin_auth_url=http://<keystone host>:35357/v2.0
auth_strategy=keystone
admin_tenant_name=<tenantname>
url=http://<neutronserver>:9696
region_name=<regionname>
service_metadata_proxy = True

[libvirt]
the below only required if using libvirt hypervisor
vif_driver=nova.virt.libvirt.vif.LibvirtGenericVIFDriver

After updating nova.conf you’ll need to restart the nova services for
changes to take effect.

OpenStack Nova Requirements for XenServer

If you are using XenServer as your Hypervisor, ensure the nova.conf on
each node running the nova-compute service has the following properties
set:

xenapi_ovs_integration_bridge=xapi1
xenapi_vif_driver=nova.virt.xenapi.vif.XenAPIOpenVswitchDriver
compute_driver=xenapi.XenAPIDriver
xenapi_connection_url=https://<Xen Server IP>
xenapi_connection_username=root
xenapi_connection_password=<XenServer Root Password>

Note: As part of configuring your XenServer for use with NSX, you will have
created an “NSX Integration Bridge”. The OVS bridge name (by default, it’s
brint) of this bridge must be specified using the
xenapi_ovs_integration_bridge flag. The above flag file defaults this
value to xapi1, but this value can be different depending on your
deployment configuration. You can run the command xe networklist to
retrieve the list of networks and associated bridges.

© 2015, VMware 8

OpenStack Nova Requirements for KVM

If you are using KVM as your Hypervisor, ensure the nova.conf on each
node running the nova-compute service has the following properties set:

[libvirt]
ovs_bridge=<integration bridge used by NSX>
virt_type=<libvirt type, e.g. xen>
vif_driver=nova.virt.libvirt.vif.LibvirtGenericVIFDriver

Note: As part of configuring your KVM Server for use with NSX, you will have
created an “NSX Integration Bridge”. The OVS bridge name of this bridge
must be specified using the libvirt_ovs_bridge flag. This value can be
different depending on your deployment configuration. This value defaults to
brint and therefore the ifnotexists flag can be used to create the
bridge only if needed.

OpenStack Nova Requirements for VMware ESXi 5.5

If you are using VMware ESXi 5.5 as your Hypervisor, the following
prerequisites must be met:
● NSX vSwitch must be installed and configured on each VMware ESXi 5.5

hypervisor node. (For details on installing and configuring NSX vSwitch for
ESXi 5.5, please refer to the NSX User Guide.)

● On each ESXi host, enable the allowcustomvifs mode in NSX vSwitch
to ensure the NSX Controller will be given the OpenStack-generated
UUIDs (not the vSphere-generated UUIDs) of all the VMs and VIFs it
handles. You must do this before you power-on the VMs. At the ESXi host
command prompt, type nsxcli allowcustomvifs. See the NSX
User Guide for details.

● Configure the Nova Compute Service to run the VMware vCenter Driver (also
known as the “VC Driver”) if using ESXi.

Once NSX vSwitch has been installed and configured on all ESXi hypervisors,
there is no further configuration required on each ESXi hypervisor / vSphere
Cluster or Nova Compute node because the logic used to bind virtual machine
interfaces to the NSX vSwitch is part of the native VC Driver.

Configuring VM Network Connectivity

This section focuses on configuring multiple networks and multiple virtual
network Interfaces (vNICs) in OpenStack Nova Compute. We will create a
network topology where each VM has two NICs: one on a “public-net” shared
by all tenants and one on a private network specific to that tenant.

© 2015, VMware 9

Multi-network topology with Logical Switches

In the above sample diagram, there is global network named “public-net” that
is shared by all tenants. Public-net is implemented by a (non-external)
Neutron network, which has been pre-provisioned by the service provider
using either the Neutron CLI or API. The topology also contains a private
network for every tenant.

If there were two projects (tenantA and tenantB), we could accomplish the
above topology by creating three Neutron networks as follows:

$ neutron netcreate publicnet shared
provider:network_type=vlan
provider:physical_network=af93bd8a07864b3ca037c98bcc4c7827
provider:segmentation_id=123
$ neutron subnetcreate publicnet 11.0.0.0/22
$ neutron netcreate tenantAprivate tenantid=<tenantA_id>
$ neutron subnetcreate tenantAprivate 10.0.1.0/24
$ neutron netcreate tenantBprivate tenantid=<tenantB_id>
$ neutron subnetcreate tenantBprivate 10.0.1.0/24

Note that we are assuming that these commands have been executed with
administrator credentials. Otherwise, Neutron will allow for creating
networks on behalf of another tenant. When tenantid is not specified,
the tenant to be associated with the network is derived from the

© 2015, VMware 10

authorization token sent in the Neutron request (XAuthToken)header.

The commands described above create the three networks that are
illustrated in the above topology diagram and a subnet on each of them. The
Neutron NSX plugin will use STT overlay networks for privatetenantA
and privatetenantB networks, whereas the publicnet network will be
implemented on the transport zone
af93bd8a07864b3ca037c98bcc4c7827 using a bridged connector
mapped to VLAN 123.

Verifying your Network Topology

At this point, if everything is set up correctly, spawning a new instance for
each tenant should result in two virtual machines with 2 virtual interfaces
each. They must be attached to ‘public-net’ and a tenant specific private
network. This can be verified in the following ways:

On Neutron:

$ neutron portlist <network_id> device_id=<vm_id>

The above command should return two ports. For one port, the network ID
should correspond to the public network, whereas for the other port, it
should correspond to the private network.

On NSX:

Log in to the NSX Manager and check the logical network configuration. It
should show the following:
1. A “Logical Switch” for each Neutron Network, with a tag that represents

the OpenStack tenant identifier; the scope of this tag is q_id.
2. The transport connector for the private logical switches should map to

the default transport zone specified in nsx.ini, and the mapping should
be STT.

3. The transport connector for the public logical switch should map to the
transport zone specified when creating the network, and the mapping
should be of type BRIDGE.

4. On each private network logical switch there should be two ports; one for
the DHCP server distributing addresses to the subnet, and one for the
private interface of the VM instance.

5. You can further verify that port security and security profile settings on
the port are consistent with the default settings; the default security
profile should be associated with the port and port security should be
enforced on both MAC and IP addresses (except the DHCP port).

6. On the public network logical switch, there should be three ports: one for
the DHCP server, and two for the VMs that were created.

© 2015, VMware 11

Topology with provider-supplied logical router

NSX L3 gateway integration with a centralized logical router and metadata services

As shown in the diagram above, the Neutron logical router leverages the NSX
L3 Gateway integration, and provides connectivity to internal networks via
the ‘x.x.x.1’ gateway address that is assigned to Logical router port attached
to a global Logical router. In order to implement this topology, or any other
topology where a logical router is shared across tenants, the logical router
and its interfaces should be created with admin credentials.

© 2015, VMware 12

Topology with per-tenant logical router

NSX L3 Gateway integration with pertenant router and MetaData Services

In the diagram above, multiple Neutron logical routers are using the same
NSX L3 Gateway service. In this case, logical routers are owned by the tenant
themselves. One or more tenant networks can be attached to these logical
routers.

Both tenant logical routers are connected to the same Neutron external
network. According to the default policy configuration, external networks can
be created by admin users only; however they’re visible by every user and
can used for setting external gateways and allocating floating IPs.

Creating NSX Bridged Networks with Neutron

NSX supports the creation of logical networks that are directly mapped to a
physical network. This section explains how to use NSX bridged logical
networks with OpenStack.

Bridged Networks with Neutron

By default, all Neutron networks are STT tunneled overlay logical networks.
The provider networks API extension can be used for creating a bridged
logical network. The provider networks extension augments the network
resource by adding the following parameters:

© 2015, VMware 13

● provider:network_type
● provider:physical_network
● provider:segmentation_id

In order to create a bridged logical network, network_type should be set to
either flat or vlan. physical_network should be set to the uuid of an
existing transport zone in NSX; finally, segmentation_id should either be
set to a valid vlan identifier, or omitted if network_type is flat.

Note that the transport zone uuid specified in the physical_network
parameter is not validated. If an invalid uuid is supplied the operation will fail
with a 500 HTTP error.

For further information on the provider networks extension, please refer to
the Neutron API reference guide and the Neutron admin guide .

1 2

The following examples will create a bridged logical network with flat and
VLAN network types:

$ neutron netcreate flat_net provider:network_type=flat
provider:physical_network=d7b177dc53104652b1bb49dc5f7fca4e

$ neutron netcreate vlan_net provider:network_type=vlan
provider:physical_network=d7b177dc53104652b1bb49dc5f7fca4e
provider:segmentation_id=123

Controlling how bridged networks are managed in the NSX
backend

When the network is deleted, Neutron will remove all the logical switches
created for that network.

The maximum number of ports for each bridged logical switch is controlled
by the max_lp_per_bridged_ls configuration parameter.

NSX L2 Gateways with Neutron

NSX Gateways allow for extending external L2 Networks into logical
networks managed by Neutron. A special use case of an NSX Gateway is
enabling Data Center Interconnect across 2 disjoint NSX-managed OpenStack
deployments, residing in the same or separate data centers. The Neutron API
network gateway extension allows for managing network gateways backed
by NSX L2 Gateway nodes, as well as connecting and disconnecting Neutron

1 http://docs.openstack.org/api/openstack-network/2.0/content/
2 http://docs.openstack.org/grizzly/openstack-network/admin/content/

© 2015, VMware 14

networks to or from them.

Tenant-provided network gateway

For this use case, we assume that the tenant will create their own network
gateway devices (transport nodes) and all needed elements to connect VMs
to the external network. Once that’s done, the following high level steps
implement the Neutron logic for the L2 connection.

1. Create Neutron network gateway devices.
2. Create Neutron network gateway service, and specify the gateway devices

it should use.
3. Create a Neutron network (logical switch).
4. Connect the gateway to the network. Optionally, a VLAN can be specified

to bind the Neutron network to a specific physical network on the
external side of the network gateway.

If your cloud administrator allows you to create the gateway device transport
nodes in NSX, then you can create one now and establish the management
connections between the controller and the gateway node. Note that the
connection will appear as down if the gateway node has not been connected
to the right controllers using its own CLI.

Create the network gateway devices (transport nodes)

VMs connect to the physical network via gateway devices. Here we register
an already installed NSX Gateway as a gateway device for use in the Neutron
installation.

$ neutron gatewaydevicecreate connectortype <connectortype>
connectorip <connectorip> clientcertificatefile
<pathtocert> <gwname>

This command creates an NSX gateway node, and populates it with
information concerning authentication and transport network connection.
The operation returns a “gateway device” resource. It is important to note
that this is a Neutron construct, not an NSX one. Therefore, its identifier is not
the identifier of the gateway node in the NSX backend.

The CLI command allows for specifying:
● gwname - A descriptive name of the resource
● connectortype - Specifies the transport type the gateway node

should use to connect to the overlay network. The default is stt. Other
available options are gre, ipsecgre, ipsecstt, and bridge.

● connectorip - Represents the IP address the gateway device will use
To connect to the overlay network. This should be the IP address of one of
the gateway’s physical interfaces.

● clientcertificatefile - The .pem file the gateway will use to

© 2015, VMware 15

authenticate itself with the NSX controller.

Note that the CLI also allows passing in the client certificate as a string
directly on the command. This option is not shown here, but can be found in
the CLI help text and online OpenStack documentation.

Create the network gateway

A gateway service allows VMs to be connected at Layer 2 (L2) to an external
network, even if the hypervisor running the VM is not physically connected to
the L2 network.

$ neutron netgatewaycreate <gateway_name> device
id=<gateway_device_id>,interface_name=<nsx_gateway_interface_name>
NAME

The device option identifies the gateway device created in the previous
step. It is important to note that, due to the implementation of the Neutron
CLI, you must specify the device option before the name of network
gateway to be created.

Note that when an L2 gateway service is created, the user can specify one or
more devices to be used for that gateway. The netgatewaycreate
operation will create a gateway service using the nodes specified on the
command line. It is not possible to reuse the same node for multiple instances
of Neutron network gateways.

The interface_name parameter optionally allows for specifying an
interface that will be used for bridging traffic. For instance, in this case
breth2 will be the 'outside' looking interface of the gateway node, and traffic
will be bridged from it to the STT overlay network where the gateway node is
connected via its 10.0.0.1 interface. The default value for the
interface_name parameter is breth0 and can be specified in the nsx.ini
file.

The device option allows for specifying:
● UUID of a Neutron gateway device.
● The name of an interface on the transport node to use (e.g.: breth0,

breth1, …). If no interface is supplied the value of the
default_interface_name configuration flag will be used. The default
value for this flag is breth0; the flag can be specified in nsx.ini. The
name specified here will be the name of the gateway service on the NSX
backend.

Note that multiple devices can be specified by repeating the device
option, in order to be able to create gateway services with multiple devices
for redundancy.

A Neutron network gateway is backed by a NSX Layer-2 gateway service,

© 2015, VMware 16

which is built with the NSX gateway transport nodes backing the gateway
devices composing the Neutron network gateway. While it is possible to
specify an empty list of devices, the resulting network gateway won’t be
functional.

Create a network, this creates a logical switch in NSX

A logical switch provides a standard L2 Ethernet service-model and contains
logical switch ports that can be configured to implement various security and
QoS policies and exposes port counters for metering or debugging.

$ neutron netcreate <netname>

Connect the network to the NSX L2 gateway

Now, connect an NSX L2 Gateway to a specific network.

$ neutron netgatewayconnect <gateway_id> <network_id>
segmentationtype=vlan segmentationid=<vlan_id>

The neutron netgatewayconnect option allows for specifying:

● A Neutron network gateway UUID
● A Neutron network UUID
● segmentationtype=vlan segmentationid=<vlan_id>, tells

the controller that you want this l2-gateway to terminate on a VLAN and
the VLAN ID.

The current release of the Neutron NSX plugin does not allow for updating
the set of devices associated with a neutron network gateway. The
netgatewayupdate operation can update the name of the network
gateway only.

When a Neutron network is connected to a gateway, a new port is added to
the network itself. As this port represents a layer-2 connection, no IP address
is allocated for it. In order to distinguish this port from regular Neutron ports,
the device_id and device_owner attributes are set to the following
values:

● device_id: <network gateway id>
● device_owner: ‘network:gateway_interface’

This port is automatically removed when the network is disconnected from
the gateway. This is achieved with the following command:

$ neutron netgatewaydisconnect <gateway_id> <network_id>
segmentationtype={flat|vlan} segmentationid=<vlan_id>

Attempts to delete a network gateway which still has an active network

© 2015, VMware 17

connection will result in a failure.

Gateways supplied by the service provider

For this workflow, we assume that a default layer-2 gateway service has been
configured in nsx.ini (see example in the appendix). In order to enable a
default gateway service, the default_l2_gw_service_uuid parameter
should be specified in the [DEFAULT] section. This should correspond to the
uuid of a L2 gateway service on the NSX platform.

Note: The plugin does not validate the l2 gateway service UUID specified in
nsx.ini. If an invalid value is specified, a runtime error will be thrown when
connecting/disconnecting networks.

Connecting a network to the default gateway:

1. User creates a Neutron network. Alternatively, the service provider can

create the network on behalf of the user using the user’s tenant identifier.
2. User retrieves the identifier of the network gateway to use through either

Neutron API or CLI; the default gateway has a predefined name, ‘default
L2 gateway service’ which can be used in neutron CLI commands.

3. Service provider connects the gateway to the network using the Neutron
API or CLI. Optionally, a VLAN can be specified to bind the Neutron
network to a specific physical network on the external side of the network
gateway.

Example:

$ neutron netcreate testnet
$ neutron netgatewayconnect <default_gateway_id> <network_id>
segmentationtype=vlan segmentationid=<vlan_id>

Alternatively, segmentationtype=flat could be used; in that case the
segmentationid attribute should not be specified

It is worth noting that the default gateway service is owned by the service
provider, and therefore regular tenants cannot see it or connect networks to
it. Indeed, in this case it is the service provider that must connect the user’s
network to the gateway, as specified previously in this section.

Enabling NSX QoS with Neutron

Neutron provides cloud operators with a tool for managing QoS parameters
for logical ports and logical switches within their networks. In the following
section, we outline some of the basic concepts of Neutron QoS, as well as how
to configure it.

© 2015, VMware 18

Concepts

● QoS Pool: This represents a base guaranteed rate profile, represented in

kbps, that can be associated with a particular logical network. Once a QoS
Pool is associated with a logical network, every Logical Port on that
particular logical network is guaranteed the QoS rate as specified by the
QoS pool.

● rxtx_factor (integer value): This is a multiplying factor associated with a
particular logical port. The ‘rxtx_factor’ is also associated with a Nova
‘flavor’. When Nova launches a VM of a particular flavor that has a
particular rxtx_factor configured, the multiplier is used to size the QoS
parameters to be associated with the Neutron port(s) created for that VM.

● Net rate: The resulting QoS rate that an OpenStack VM receives is base
rate (represented by QoS Pool) times ‘rxtx_factor’ for a particular VM.

Example:

1. Network A is configured with a QoS Pool allowing 1024 kbps per port.
2. Port A on Network A contains a vNIC that is of a particular flavor with

‘rxtx_factor’ of 2.
3. The net QoS rate associated with Port A equals 1024 x 2 = 2048 kbps.

Configuring QoS with Neutron and Nova

Neutron Configuration

1. Create a QoS Pool using Neutron CLI:

$ neutron queuecreate <queue_name> min <min_rate> max
<max_rate> qos_marking <{trusted|untrusted}> dscp <dscp_value>
default <{True|False}>

Example:

$ neutron queuecreate net1queue min 0 max 1024

2. Associate a QoS Pool with a Network:

$ neutron netcreate net1 queue_id <queue_id>

Or if the network already exists:

$ neutron netupdate <net_id> queue_id <queue_id>

© 2015, VMware 19

Nova Configuration

1. Create a Nova flavor that contains rxtx_factor associated with it:

$ novamanage flavor create name=NewFlavor –memory=2048 –cpu=2
–local_gb=5 –rxtx_factor=2 swap=1024 –flavor=8

When booting an instance is associated with the newly created flavor, the
logical port that the VM’s vNIC is attached to will have an associated
rxtx_factor of 2. If this particular logical network contains a qos_pool of
512 kbps, then the effective QoS rate associated with this new port will be
512 x 2 = 1024 kbps.

The QoS pool (or queue) associated with the network should be considered
as a “template” for pools to be associated to the network’s ports. Therefore:
● Changing the QoS queue settings on the network won’t affect any existing

port, but will apply to every port created afterwards;
● Neutron will have a distinct queue for each port, in addition to the queue

associated with the network.

Configuring Default QoS with Neutron

The default QoS Pool feature allows you to create a QoS Pool that will be
associated with every logical port that will be created using the Neutron API.
This process removes the necessity to manually associate a QoS pool with a
Neutron network. It’s important to note that if a neutron network is
associated with a QoS pool and a default queue exists the QoS pool associated
with the network takes precedence.

Note: Only users with administrative right are allowed to manipulate the
default queue.

Neutron Configuration

1. Create a default QoS Pool using Neutron CLI:

$ neutron queuecreate <queuename> min <min_rate> max
<max_rate> qos_marking <{trusted|untrusted}> dscp <dscp_value>
default True

For example:

$ neutron queuecreate default_queue min 0 max 1024 default
True

2. Delete a default QoS Pool with a network:

© 2015, VMware 20

$ neutron queuedelete <queue_id>

Port Security

The Port Security mechanism prevents a VM from spoofing its MAC or IP
address. Port security is enabled at the port level via an extended attribute of
the Port resource in Neutron. When a port is created, by default, port security
is always enabled . 3

In order to disable port security one needs to pass
port_security_enabled=False on the CLI when creating the port.
Note that when port_security_enabled=True (the default setting) only
packets that match the mac and ip addresses associated the port are allowed
to traverse it.

Note: a prerequisite of enabling port_security_enabled is that there
must be an IP address associated with the port in neutron, otherwise the API
will return a 409 Conflict HTTP error.

Port security can also be enabled/disabled via the neutron CLI shown below.

Create a port with port security enabled:

$ neutron portcreate <net_id> port_security_enabled=True

Add port security to a port:

$ neutron portupdate <port_id> port_security_enabled=True

Remove port security from a port:

$ neutron portupdate <port_id> port_security_enabled=False

Security Groups using Neutron API and NSX

The NSX Plugin allows for configuring security groups either through
Neutron and/or Nova APIs.

From a functional perspective, the only difference between the two modes is
that with the Neutron API for security groups, one can also control egress
filtering from the VM. We recommend using Neutron security groups directly.

However, because of integration with existing tools, such as Horizon, it might
be necessary or preferable managing security groups through the Nova API.

3 Unless the port is created via Nova. In that case port security is always enabled as it is
required for enforcing the default security group.

© 2015, VMware 21

The following setting must be applied to nova.conf (usually in /etc/nova)
on all of your hosts running any Nova service:

security_group_api = neutron

For examples of how to use Nova security groups, see the Nova security
group documentation at the following address:
http://docs.openstack.org/openstack-ops/content/security_groups.html

Managing security groups and rules

Create a security group for “web servers”

$ neutron securitygroupcreate webservers description "security
group for webservers"

Viewing Security Groups:

$ neutron securitygrouplist

Creating Security Group Rule to allow port 80 ingress

$ neutron securitygrouprulecreate direction ingress protocol
tcp port_rage_mi 80 port_rage_ma 80 <security_group_uuid>

List Security Group Rules

$ neutron securitygrouprulelist

Delete security group rule

$ neutron securitygroupruledelete <security_group_rule_uuid>

Delete security group

$ neutron securitygroupdelete <security_group_uuid>

Working with ports and security groups

Create a port associated with security group

$ neutron portcreate <network_id> security_groups list=true
<security_group1_id> <security_group2_id> port_security=mac_ip

Remove security groups from a port

$ neutron portupdate <port_id> security_groups=None

Boot VM on “webservers” security group:

© 2015, VMware 22

http://docs.openstack.org/openstack-ops/content/security_groups.html

$ nova boot image <image> flavor <flavor> nic
netid=<networkuuid> MyVM security_groups webservers

Launching a VM without a security group

You can launch a VM without a security group by following these steps:

First, create a port in Neutron without a security group:

$ neutron portcreate nosecuritygroups <network>

Then pass that port to Nova:

$ nova boot nic portid=<portid> ...

Please note that pre-Havana versions of Nova would automatically add a
security group to ports passed in via the API, but since the Havana release,
Nova no longer does this.

Openstack L3 APIs using NSX L3 Gateway

Neutron provides an API extension for managing Layer 3 forwarding, source
NAT, as well as Floating IPs.

VMware NSX users can use these APIs in order to leverage NSX L3 Gateway
functionality for enabling a fault-tolerant and scalable Logical L3 model
through the VMware NSX-mh Neutron Plugin.

The VMware NSX Plugin for Neutron supports all the features of the Neutron
L3 API extension.

This section discusses how to use the L3 extension with the NSX plugin. For
more information concerning the API specification, please refer to Neutron
API reference and administrator guides.

Prerequisites

1. Add an NSX Gateway transport node and create a Gateway Service using

NSX Manager. The UUID of this gateway service must be stored in
nsx.inivia the default_l3_gw_service_uuidproperty. Please note
that the NSX plugin does not validate the correctness of the specified id
against the NSX controller. Setting an invalid value will result in an error
while performing L3 operations.

2. Configure physical network infrastructure that we will be NATing private
networks to and gather the CIDR block and next-hop IP.

© 2015, VMware 23

3. Gather information around the CIDR block that will be used to create the
floating IP “pool” out of which virtual machines will be assigned external
network IP addresses.

Managing Routers and SNAT

Creating a router

$ neutron routercreate <router_name>

This operation results in the creation of a logical router in the NSX platform.
Although the router has a logical port with a L3 Gateway Attachment, no
Source NAT rules are configured, and no IP address is configured on the
gateway port.

By default the Neutron API creates a “centralized” router. It is however also
possible to create “distributed” routers, thus leveraging NSX’s distributed
logical router capabilities.

To this aim, it is sufficient to set the distributed flag to true when
creating a logical router in Neutron:

$ neutron routercreate <router_name> distributed True

Note that the default router type can be specified in neutron.conf via the
router_distributed property. See the neutron configuration reference for
additional details.

However, Neutron ships with a restriction which allows only admin users to
create distributed routers. When using the NSX plugin there is no reason to
keep this restriction, that can be lifted amending the following line in
/etc/neutron/policy.json:

"create_router:distributed": "rule:admin_only"

into:

"create_router:distributed": "rule:admin_or_owner"

The VMware neutron plugins package also provides json policy files
specialized for NSX features. These files also have policies for NSX distributed
logical routers. These policies are installed by default in
/etc/neutron/plugins/vmware/policy.

However, the router policies contained in routers.json won’t override the
default ones in policy.json, which should be manually removed.

© 2015, VMware 24

Attaching a Neutron subnet to a router

$ neutron routerinterfaceadd <router_name|router_id>
<subnet_name|subnet_id>

This operation connects a neutron subnet to a router. The subnet’s gateway
IP (by default the first address in the CIDR for the subnet), will be assigned to
the router interface. With this operation, a port is also added to the neutron
network.

In order to distinguish this port from regular neutron ports, the device_id
and device_owner flags are set to the following values:

● device_id: <router id>
● device_owner: ‘network:router_interface’

On the NSX side, this operation adds a logical port both on the logical router
and on the logical switch corresponding to the subnet’s network. A patch
attachment will connect these two logical ports. The subnet’s gateway ip
address will be configured on the router’s logical port.

If an external gateway is already configured for the router (see below), a
Source NAT rule will be added for the subnet’s CIDR. The order of such rule is
determined as follows:

● 255 CIDR_PREFIX_LEN. For instance the SNAT rule order for the

10.0.0.0/24 subnet would be 231 (255 24)

This operation also generates a “Source No Nat” rule in the NSX backend for
the subnet being connected. This rule will prevent east-west traffic from

4

being NATted.

Detaching a subnet from a router

$ neutron routerinterfacedelete <router_name|router_id>
<subnet_name|subnet_id>

This operation removes the association between a Neutron subnet and a
router. The corresponding logical ports and NAT rules on the NSX platform
are removed as well.

Configuring an external gateway on a router (SNAT)

$ neutron networkcreate <name> router:external=True

4 Traffic directed between private Neutron networks connected to the same router

© 2015, VMware 25

$ neutron subnetcreate <ext_net_id|ext_net_name> <external_cidr>
enable_dhcp=False
$ neutron routergatewayset <router_id|router_name> <ext_net_id>

This operation enables source NAT on the logical router. SNAT rules will be
created for every subnet connected to the router.

The ‘external network’ abstracts the physical network beyond the NSX logical
router. For this reason:
● The gateway ip address for the subnet defined on the external network

should correspond to the ip address of the physical network’s gateway.
● The allocation_pools for this subnet should be configured

appropriately as floating IPs will be selected from this pools. By default all
the IPs in the CIDR, with the exception of the gateway IP and the DHCP
server (if enabled), are available in the allocation pool. For more
information about configuration of allocation pools please refer to the
Neutron API reference.

● It is advisable to keep dhcp disabled for external networks.

Note: Unlike regular Neutron networks, external networks are not backed by
a NSX logical switch. When an external network is created via the Neutron
API no corresponding configuration is performed on the NSX cluster. As a
consequence, the scenario in which instances are deployed directly on public
facing networks (ie: without requiring a floating IP for external access),
should be implemented using the provider networks extension (see Section 4
in this document for more information)

On the NSX platform, the router_gateway_set operation will:

● Update the router’s gateway address to the external subnet’s

gateway_ip attribute
● Allocate an address from the external subnet’s allocation pool and assign

it to the NSX logical router’s L3 GW port.

Managing Floating IPs

Prerequisites
As stated previously in this section, floating IPs are allocated from an external
network. It is important that:
● The external network is configured as an external gateway for a router.
● The router has an interface on each internal logical network where the

ports to be give external access through Floating IPs are located.

Create and associate a Floating IP

$ neutron floatingipcreate <ext_net_id|ext_net_name>

© 2015, VMware 26

This operation allocates a floating IP from the allocation pool for the external
network. When a floating IP is created in this way, it is not associated and no
configuration is performed on NSX.

$ neutron floatingipcreate <ext_net_id|ext_net_name> port_id
<port_id>

Note: the parameter port_id uses an underscore here. Unlike many
Neutron parameters, the syntax with the the dash (portid) won’t work
in this case.

This operation instead creates a floating IP and associates it to a Neutron
port. It is important that the port should belong to a network connected to
the router for which ext_net represents the external gateway network.

The association implies that on the NSX platform:
● The floating IP address is added to the L3 gateway router logical port.
● Source and Destination NAT rules for forwarding traffic to and from the

internal neutron port are added to the NSX logical router.

Associate a previously unassociated floating IP

$ neutron floatingipassociate <floatingip_id> <port_id>

This operation performs the association of an already existing floating IP to a
Neutron port.

Disassociate a floating IP

$ neutron floatingipdisassociate <floatingip_id>

This operation removes the floating IP address from the logical router port
configuration, and removes source and destination NAT rules for the floating
IP.

Sample workflow

We can test out a sample workflow to create a VM and assign it a floating IP
using the workflow described below. Please note that we are assuming that:
1. A layer-3 gateway service has been created in NSX, and its uuid specified

in nsx.ini
2. A neutron router has been configured and associated with an external

network and at least one internal network.

Boot a VM with specified image id, flavor and name.

© 2015, VMware 27

$ nova boot image <img_id> flavor 1 <instance_name>

Allocate a Floating IP. This command will create a DNAT rule on NSX’s Logical

router allowing the VM external network connectivity.

$ neutron floatingipcreate <external_network_id>

Query Neutron to get the id of the port to be associated with the floating IP.

$ neutron portlist device_id=<vm_id>

Associate an allocated floating IP with a particular VM on port <port_id>.

$ neutron floatingipassociate <floating_ip_id> <port_id>

Detach a Floating IP from a VM.

$ neutron floatingipdisassociate <floatingip_id>

Delete DNAT rule on the NSX Logical router, which allows external network
connectivity.

$ neutron floatingipdelete <floatingip_id>

Managing multiple NSX Gateway appliances

By default, logical routers are implemented by the default layer-3 gateway
service specified in nsx.ini. It is possible to use several gateway services,
and allow tenants to choose which gateway service should be used by their
routers.

This is achieved using the provider networks extension, associating external
networks with L3 gateway service. To do so the following parameters should
be specified:
● provider:network_type: l3_ext
● provider:physical_network: <l3_gw_service_uuid>
● provider:segmentation_id: <vlan_id>

The second parameter identifies the gateway service associated with the
external network, whereas the third parameter is optional and allows to
specify a particular VLAN tag to be used on the external interface of the
gateway.

For instance the following command will create an external network mapped
to a non-default gateway service:

© 2015, VMware 28

$ neutron netcreate external2 router:external
provider:network_type=l3_ext
provider:physical_network=58e1e90639c145998b87e00274c249ab

Note: The router:external parameter is required when creating the
l3_ext net.

This network is then used as any other network for setting the external
gateway for a router:

$ neutron routergatewayset router2 external2

In the underlying NSX platform the L3 Gateway Attachment for the router’s
gateway port will specify the 58e1e90639c145998b87e00274c249ab
layer-3 gateway service.

Note: Routers handling exclusively east-west traffic, i.e.: without an external
gateway, are always implemented using the default layer-3 gateway service.

Metadata Support

VM Instances often use the nova metadata server to retrieve information
such as keys for ssh access. Instances will send HTTP requests to a
pre-defined address 169.254.169.254 in order to download this information.

The Neutron NSX plugin offers two approaches for allowing instances to
reach the metadata server:
● Metadata Access Network: This mode allow for accessing the metadata

server through a Neutron router. Metadata traffic is routed to a “metadata
access network”, which is connected to the router, but invisible to the
user. This mode requires IP namespaces.

● Metadata Host Route: This is the only mode supported when the
infrastructure does not support IP namespaces. If IP namespaces are
supported, one of the previous two mode should be selected. This mode
requires instances to support DHCP option 121 (classless static route).
This mode works in a similar way as the isolated metadata proxy.

The following table provides a quick reference for knowing whether a
particular metadata mode should be used according to requirements.

 IP Namespaces
Supported

IP Namespaces
NOT supported

Option 121
supported

 Metadata Access Network

 Metadata Host Route

© 2015, VMware 29

For configuring the metadata mode, it might be necessary to edit both the
nsx.ini and dhcp_agent.ini configuration files. For each mode, the
following table report the configuration settings for both files.

Mode nsx.ini dhcp_agent.ini

Metadata access
network

[nsx]
metadata_mode =
access_network

[DEFAULT]
enable_metadata_ne
twork = True
enable_isolated_me
tadata = True

Metadata host
route

[nsx]
metadata_mode =
dhcp_host_route

[DEFAULT]
enable_metadata_ne
twork = False
enable_isolated_me
tadata = False

In the remainder of this section, we’ll discuss the supported metadata access
modes in detail.

Metadata Access Network

This metadata access mode uses the Neutron logical router to forward
metadata traffic to a special-purpose “metadata access” network. This
network will the host a metadata access proxy which forwards traffic to the

5

metadata agent and then to Nova Metadata server, as depicted in the
following diagram.

5 This instance of the metadata proxy will handle requests for all networks attached to the
router associated with the metadata access network.

© 2015, VMware 30

In order to enable this mode:
1. The NSX plugin should be configured to automatically attach the metadata

access network when a router interface is added. This is achieved by
setting metadata_mode option to access_network in nsx.ini

2. The DHCP agent should be configured to handle metadata access
networks. To this aim, also the isolated metadata proxy should be
enabled. Therefore both the enable_metadata_network and
enable_isolated_metadata parameters should be set to True

Metadata Host Route

As stated earlier in this section, this approach leverages the DHCP agent to
inject a host route in VM instances in order to redirect metadata traffic
through the dhcp agent itself.

Further configuration to be performed on the DHCP Agent:

1. Configure IP 169.254.169.254 on lo for the node where the dhcp agent is

running, and add a NAT PREROUTING rule to redirect all traffic to this
address on port 80 to port 8775 (or whatever port the nova metadata
server is using).

If the metadata server is running on a host different from the one where
the dhcp agent is running, the iptables NAT table should be configured to
redirect traffic to 169.254.169.254 to
<metadata_ip>:<metadata_port>

This can be done using the following command:

$ iptables t nat A PREROUTING d 169.254.169.254 p tcp m tcp
dport 80 j DNAT todestination 172.16.110.201:8775

2. Ensure the metadata_mode option in nsx.ini ([nsx] section) is set to

dhcp_host_route. If not, please bear in mind that the Neutron service
should be restarted after altering nsx.ini.

3. Ensure your images are able to handle DHCP option 121

This would result in a route to 169.254.169.254/32 being added to the VM’s
routing table. The next hop would be the DHCP agent itself.

The route will also be updated if the address of the DHCP server should
change; however this would not be reflected on the VM’s route table until the
DHCP lease expires (by default, expiration time is 120 seconds).

Known Issues

© 2015, VMware 31

When using the metadata access network, occasional failures might be
experienced when removing the last interface from a router. Should that
happen, the following workaround might be considered:

● Re-run the command for removing the router interface:

neutron routerinterfacedelete <router> <subnet>
Do not worry if this operation fails because the interface is not found.

● Remove the router: neutron routerdelete <router>
● Re-create the router: neutron routercreate <router>

User-configurable connectivity timeouts

The NSX-mh plugin allows one to configure custom timeout for the API
connectivity between the plugin and NSX API Server.

The following parameters are user configurable (through nsx.ini):

● http_timeout: How long to wait before aborting an unresponsive

controller (and allow for retries to another controller in the cluster).
● retries: The maximum number of times to retry a particular request.
● redirects: The maximum number of times to follow a REDIRECT

response from the server.

The default values for these will be as follows:

● http_timeout: 30 (seconds)
● retries: 2
● redirects: 2

Appendix A: Reference Network Architecture

© 2015, VMware 32

● In logical space, each virtual machine is connected to a shared “Public”

network.
● In logical space, each virtual machine also has access to a tenant-specific,

isolated private network.
● In transport space, each hypervisor is connected to the “Public” network

on one particular NIC.
● In transport space, each hypervisor has a NIC connected to a

“Management” network. The management network is leveraged for
inter-hypervisor communication as well as for creating “tunneled” L2
over L3 networks, which are represented as “logical” networks in the
“Tenant View” of the diagram.

Appendix B: Suggested upgrade workflow

The instructions provided here are intended to supplement your OpenStack
vendor’s upgrade instructions and outline upgrade of the Neutron NSX-mh
plugin only. Information contained herein is intended for reference.

1. Backup your existing neutron configuration. Typically this is located

under /etc/neutron/
2. Install or update the neutron based packages using your OpenStack

vendors instructions.
3. Using your backed up configuration as a reference, copy the applicable

values into the new neutron configuration files. This includes
neutron.conf, dhcp_agent.ini, metadata_agent.ini and
nsx.ini.

© 2015, VMware 33

4. Mark the current database as Juno:
$ neutrondbmanage configfile /etc/neutron/neutron.conf
configfile /etc/neutron/plugins/vmware/nsx.ini stamp juno

5. Run schema and data migration:
$ neutrondbmanage configfile /etc/neutron/neutron.conf
configfile /etc/neutron/plugins/vmware/nsx.ini upgrade head

6. Restart neutron server.

© 2015, VMware 34

