
Draft Draft

1

Multi-Tenant Tenanting in OpenStack

Jorge L Williams <jorge.williams@rackspace.com>
Ziad N Sawalha <ziad.sawalha@rackspace.com>

Khaled Hussein <khaled.hussein@rackspace.com>

Abstract

As a cloud computing platform, OpenStack must support the concept of multi-tenancy. A common approach
to organizing resources by 'tenant' across services is needed to be able to correlate usage tracking, auditing,
authorization, and so forth. Within each multi-tenant service, the ability to identify each tenant's resources is also
key.

The exact definition of a tenant and what it maps to in an operator's business model is unpredictable. Some operators
will map tenants to customes, others to tenants (whatever tenant means for them), and others yet may map them to
a cost center, and environment (production, staging, test, dev), etc... This document explains the rationale behind
the lightweight standard for service developers adopted by OpenStack to implement tenancy and resource grouping
without a-priori knowledge of billing, accountinging, and customer models and processes specific to the operator of
an OpenStack deployment.

Table of Contents
Rationale and Goals ............................................................................................................  1
Specification Overview ........................................................................................................  1

Tenant Lifecycle ........................................................................................................  1
Admin API ................................................................................................................ 2

Questions and Answers ......................................................................................................  10
References .......................................................................................................................  10

Rationale and Goals
Building multi-tenant services is complicated and often involves knowledge of business processes that vary
from one organization to another. We propose a method of organizing resources that allows multi-tenancy
to be implemented on top of OpenStack services. By doing so we introduce a separation of concern between
operators and service developers. Service developers offer management to tenants. From their perspective
tenants are simply collection of resources. Operators manage tenants that may be associated with one or
more accounts, customers, departments, or whateve their business model looks like. This approach lowers
barriers to service developers by allowing them to develop services without a-priori knowledge of billing
and accounting processes of the organization in which the services are deployed. Likewise, organizations
will be given flexibility in the manner in which they deploy and offer OpenStack services. In this blueprint,
we define a simple tenant admin API that facilitates and standardizes on this approach.

Specification Overview

Tenant Lifecycle
From the perspective of a service developer a tenant ID is simply an arbitrary string that is used to organize
resources. We propose that a string be used as a top level resource collection after the version identifier: /



Draft Multi-Tenant Tenanting in OpenStack Draft

2

version/tenantId. Placing the tenant ID as a top level container dictates that all client requests are
automatically associated with a tenant. Requests to create tenants or move resources between tenants are
received via an admin API which is described in detail in the next section. Developers are responsible for
ensuring that all usage metrics contain the tenant ID string.

Service operators, on the other hand, are responsible for organizing resources around tenants for the
purposes of billing and authorization. Operators use tenant IDs to help organize service resources. The then
expose service endpoints to their users and a method of tracking the tenant ID (Example, they may provide
their tenants with API endpoints that contain the tenant ID embedded in the URI or, as an alternative,
may track the tenant ID through the use of an authentication mechanism like tokens from OpenStack's
Identity Service, called Keystone). The operator can then collect usage logs from the service and aggregate
necessary usage metrics in order to charge back usage for the tenant to the appropriate entity (customer,
account, department, cost center, etc...).

The relationships among tenants, operators, and services are illustrated in detail in the figure below.

Figure 1. Multi-Tenancy Overview

SERVICE

Te nant ...Tenant CTe n a n t  A Tenant B

Consumers

OpenStack Deployment

A d m i n  API

S e r v i c e  API

PUT /v1.0/T1000

POST /v1.0/T1000/Widget

/T1000
Widge t1
Widget2
Etc...

D a t e  T e n a n t  Re s o ur c e  Me t ho d  Me t r i c A
- - - - - - - -  - - - - - - - - - - - - - - - - -  - - - - - -  - - - - - - -
2 0 1 0 0 1 0 1  T1 0 0 0 Wi d g e t 1  P OS T  1 0 . 0 0

Consumer s igns  up.
(O p e ra to r a p p lie s  
th e ir o w n  m o d e l fo r 
organizing tenants )

Te n a n t  t o  Account Mapping

A c c o u n t  Te nant
- - - - - - - - - -  - - - - - - - -
A c c o u n t  A  T1 0 0 0

O p e ra to r g e n e ra te s  a n d  
m a in ta ins  te na nt s tring s  a nd  
m a pping s  be tw e e n  a c c o unts  
and tenants

O p e ra to r p ro v is io n s  
te n a n ts  to  O p e n S ta c k 
s e rv ic e s  u s in g  C R U D  
o p e ra tio n s  o n  A d m i n  API

2

Public/Consumer Network

Private /Management Network

Raw Logs

Operator’s  c u s to m e r 
a c c e s s e s  s e rv ic e  
u s in g  th e ir a s s ig n e d  
tenant

S e rv ic e  p ro v id e s  
fu n c tio n a lity  a n d  
tra c k s  u s a g e  a t 
re s o u rc e  a n d  te n a n t 
le ve l

S e rvic e  g e ne ra te s  ra w  us a g e , 
a u d it lo g s  p ro v id in g ,  a t a  
m in im u m , th e  a s s o c ia te d  
tenant id

5

6

Te n a n t  Accounting

A c c o u n t  T e n a n t  Us a g e  Cha r g e
- - - - - - - - -  - - - - - -  - - - - - -  - - - - - -
A c c o u n t  A  T 1 0 0 0  1 0 . 0 0  $ 9 9 . 9 0

O p e ra to r c a lc u la te s  
u s a g e  a n d  c h a rg e ,  
fin d s  a c c o u n t,  a n d  
p e rfo rm s  c h a rg e b a c k 
to account

8

7

Operator

Private /Management Network
Portal

1

3

O p e ra to r re tu rn s  
te n a n t in fo rm a tio n  
to consumer

4

We l c o m e !  Your URL is :
http.../v1.0/T1000/...

OpenStack Multi-Te n a n t  Accounting  Model - Example  Deployment

Admin API

A service API is an API that's made available to most clients — in most cases it is the public API that users
consume. In contrast, an admin API is an implementation of the service API with additional calls to allow
for the management and maintenance of the service. The admin API is consumed strictly by operators.
Calls whose effects span multiple tenants should be placed in an admin API. Admin APIs SHOULD NOT
be exposed via public endpoints and SHOULD have tighter security constraints than those of service APIs.
We recommend that admin API users and service API users authenticate against separate authentication
systems. All OpenStack services MUST implement an admin API.



Draft Multi-Tenant Tenanting in OpenStack Draft

3

Note

The requirement for an additional admin API does not necessarily dictate that two
separate implementations of the API be written. Service teams may opt to write a single
implementation of the API and expose it via two separate endpoints: a public endpoint and an
admin endpoint. Alternatively, they may write one endpoint that exposes the administrative
API calls to appropriately authorized clients. In the public endpoint, reverse proxy filters may
be employed to cull admin calls before they reach the service implementation. A different
authentication component may also be used at each endpoint to interact with separate
authentication systems.

In the following sections, we propose a set of calls that MUST be implemented by admin APIs in
OpenStack and an optional set that SHOULD be implemented. Together these calls allow for a simple
and consistent admin API for the management of tenants in OpenStack.

Required Operations

The following operations MUST be implemented by OpenStack services and MUST be made available
via the admin API. At their discretion, service operators MAY provide public access to GET and HEAD
operations via the service API. The PUT and DELETE calls, however, SHOULD be accessible from the
admin API only.

Get Tenant

Verb URI Description

GET /version/tenantId Get Tenant.

Normal Response Code(s): 200, 203, 204

Error Response Code(s): 404, 410, others …

Services are not required to provide a representation of a tenant on a GET request. If a representation is
returned, it SHOULD provide information about the tenant along with tenant metadata. Additionally, the
representation MAY contain a list of top level tenant resources. The actual format of the representation
is service-specific.

If a service returns a tenant representation, it should return either a response code of 200 (Okay) or 203
(Non-Authoritative Information) if the request is cached. If a service does not return a representation, then
it MUST return a 204 (No Content). Generally, a response code in the 200s signifies that the tenant exists
and is valid. A 404 (Not Found) signifies that the tenant does not exist and a 410 (Gone) means that the
tenant has recently been marked for deletion, is currently unavailable, and may be recoverable. Services
may provide an additional operation to recover a recently removed tenant.

Get Tenant Metadata

Verb URI Description

HEAD /version/tenantId Get Tenant Metadata.

Normal Response Code(s): 204

Error Response Code(s): 404, 410, others …



Draft Multi-Tenant Tenanting in OpenStack Draft

4

A HEAD operation MAY return metadata for a tenant. If it does, it MUST return the same metadata that
would be returned via a GET operation. The response to this call MUST only contain HTTP headers. As
with GET requests, a 204 (No Content) signifies that the tenant exists and is valid. A 404 (Not Found)
signifies that the tenant does not exist and a 410 (Gone) means that the tenant has recently been marked
for deletion, is currently unavailable, and may be recoverable. Again, services may provide an additional
operation to recover a recently removed tenant. The HEAD operation may be used as a shorthand for GET
in cases where the service returns a representation document but the client is not interested in it.

Create a tenant

Verb URI Description

PUT /version/tenantId Create or Modify a tenant.

Normal Response Code(s): 201, 202,

Error Response Code(s): 409, others …

A PUT operation can be used to create or (optionally) modify a tenant. If a service provides a representation
for a tenant, the representation SHOULD be included as part of the PUT request and it SHOULD match
the representation returned by GET. One possible use of a tenant representation is to keep track of a
tenant's tier in cases where the service offers different levels of performance at different tiers. Here, an
operator may create a new tenant and assign it to a tier with a single PUT request. The operator may also
update a tenant's tier by performing additional PUTs on the tenant. On success, a 201 (Created) should be
returned when the tenant is created and a 202 (Accepted) should be returned when the tenant is modified.

In cases where the tenant representation offers a list of tenant resources, the PUT operation SHOULD
NOT be used to add resources to or remove resources from the tenant. Services MUST ensure that PUT
requests are idempotent. If a tenant does not have a representation, or the representation is not updatable,
a 409 (Conflict) may be returned to indicate that a tenant with the given ID has already been created and
may not be updated.

Note that a PUT operation is used to create a new tenant with a tenant ID. This means that the operator is
in complete control of the tenant ID value and that the tenant ID is not generated by the service. That said,
the following are the properties of an tenant ID that service implementers can rely on.

1. The tenant ID is a string in the UTF-8 character set.

2. The UTF-8 string will not be greater than 255 character units and it will not be empty.

3. The string may contain any character other than the path separator: /.

4. The UTF-8 string will be properly encoded in the request URL according to the encoding rules defined
in RFC 1738 [1]. Services MAY reject improperly encoded URLs.

An OpenStack service should make no assumptions about the tenant ID other than those listed above. As
a result, services MUST set aside 255 character units for storing tenant IDs. Services should also consider
long tenant IDs when imposing limits on the size of a request URL.

The following are examples of tenant IDs and their encoded URLs:



Draft Multi-Tenant Tenanting in OpenStack Draft

5

Example 1. Example tenant IDs

tenantId Sample Encoded URL Valid

12345 https://widgets.openstack.com/v1.0/12345/widgets Yes

Bob's Tenant https://widgets.openstack.com/v1.0/Bob's%20Tenant/widgets Yes

∑∞∆∏ https://widgets.openstack.com/v1.0/%E2%88%91%E2%88%9E
%E2%88%86%E2%88%8F/widgets

Yes

resel:sub:acct https://widgets.openstack.com/v1.0/resel1:sub2:acct3/widgets Yes

resel\sub\acct https://widgets.openstack.com/v1.0/resel1\sub2\acct3/widgets Yes

resel/sub/acct https://widgets.openstack.com/v1.0/resel1/sub2/acct3/widgets No, using path
separator.

https://widgets.openstack.com/v1.0//widgets No, empty.

The restrictions placed on tenant IDs SHOULD be described in the admin API documentation and MAY
also be documented in the admin WADL. An example WADL is illustrated below.

Example 2. Tenant ID Sample WADL Definition

<?xml version="1.0" encoding="UTF-8"?>

<application xmlns="http://wadl.dev.java.net/2009/02"
             xmlns:xsd="http://www.w3.org/2001/XMLSchema"
             xmlns:w="http://widget.openstack.com/widget/api/v1.0">

   <grammars>
    <schema
        elementFormDefault="qualified"
        attributeFormDefault="unqualified"
        targetNamespace="http://widget.openstack.com/widget/api/v1.0"
        xmlns="http://www.w3.org/2001/XMLSchema">

        <simpleType name="TenantID">
            <restriction base="xsd:string">
                <pattern value="[^/]+" />
            </restriction>
        </simpleType>
    </schema>
   </grammars>

   <resources base="https://widget.openstack.com/widget/api/v1.0">
    <resource path="{tenantId}">
        <param name="tenantId" style="template" type="w:TenantID"/>  
        .
        .
        .
    </resource>
   </resources>
</application>

                            



Draft Multi-Tenant Tenanting in OpenStack Draft

6

Note that the tenant ID pattern is very simple. Tenant IDs must contain one or more characters not
matching the path separator: /.
Here we define tenantId as a URI template parameter of type TenantID. The fact that we define
the TenantID type so that it restricts the use of the path separator character is redundant in this case
because template parameters do not allow values with path separators. Nonetheless, we define the
TenantID type in order to be explicit and in case the type is used elsewhere.

Remove a tenant

Verb URI Description

DELETE /version/tenantId Remove a tenant.

Normal Response Code(s): 204

Error Response Code(s): 404, 410, others …

A DELETE operation is used to remove a tenant. a tenant's resources SHOULD be deleted after a tenant
has been removed. That said, resources SHOULD remain recoverable and in a deleted state for a period
of time before they are actually removed. This prevents data loss in cases involving human error. The
DELETE operation SHOULD always return asynchronously. On success it should return a 204 (No
Content). The operation should return a 404 (Not Found) if the tenant does not exist and a 410 (Gone) if
the tenant has already been marked for deletion and is still in a recoverable state. Services may provide an
additional operation to recover tenants that have been marked for deletion but have not yet been removed.

Optional Operations

The following operations SHOULD be implemented by OpenStack services, but it is not a strict
requirement that services support them. The operations involve moving resources from one tenant to
another. There are a number of use cases where such moves are necessary, and the operations below allow
these use cases to be implemented in an efficient manner. If a service team should decide not to include
support for the following calls it is recommended that, at the very least, a manual operational process exists
that provides the ability to transfer resources between tenants.

Move a Resource

Verb URI Description

POST /version/tenantId/path/to/resource/action/
move?dest=tenantId

Move a Resource

Normal Response Code(s): 303, 301

Error Response Code(s): 404, 410, others …

A POST operation on a move action URL of a resource (…/path/to/resource/action/move) causes the
resource specified by the path to move to the tenant in the dest URL parameter. The operation does not
require a content body. On success, the service should return a 303 (See Other) with a Location header
pointing to the resource's new home. The service should respond with a 404 (Not Found) if the resource
does not exist or 410 (Gone) if the resource has been recently deleted. Additionally, a service may respond
with a 301 (Moved Permanently) if the resource has already been moved. In this case, the Location
header should point to the move action URL in the new resource location.

After the resource has been moved a service may respond with either a 404 (Not Found) or a 301 (Moved
Permanently) to a GET request on the resource itself (…/path/to/resource). The 301 response must contain
a Location header with an URL pointing to the resource's new location.



Draft Multi-Tenant Tenanting in OpenStack Draft

7

Move all Resources

Verb URI Description

POST /version/tenantId/action/
move?dest=tenantId

Moves all resources into a destination
tenant.

Normal Response Code(s): 204, 202

Error Response Code(s): 404, 410, others …

A POST operation on a move action URL of a tenant (/version/tenantId/action/move) causes all
resources in that tenant to move to the tenant specified by the dest URL parameter. This operation is
very similar to the operation described above, except that it moves all resources in the tenant instead of a
single resource. It is important to note that the tenant MUST NOT be deleted automatically after resources
have been moved. Instead, an operator must explicitly issue a DELETE on the tenant. On success, the call
should return a 303 (See Other) with a Location header pointing to the destination tenant. The service
should respond with a 404 (Not Found) if the tenant does not exist or 410 (Gone) if the tenant has been
recently deleted. A service may respond with either a 404 (Not Found) or a 301 (Moved Permanently) on
a GET request on a previously moved resource. The 301 response must contain a Location header with
an URL pointing to the resource's location in the new tenant.

Ensuring Consistency

The move operations above assume that resources are logically, and not physically, organized into tenants.
In this case, move operations are virtual and can occur without the need to ensure consistency between
resources as they move from one tenant to another. There may be cases, however, where tenants provide
a physical organization of resources. For example, tenants may be placed in different service tiers and
the tiers may be distributed among different sets of nodes in a cluster. Here, resources must be physically
moved from one node to another, and operators must be assured that a resource is in a consistent state before
it can be moved. The operations below allow for consistent moves by utilizing a move action resource.

Get a Move Action

Verb URI Description

GET /version/tenantId/path/to/resource/action/
move?dest=tenantId

Get resource move action.

GET /version/tenantId/action/
move?dest=tenantId

Get all resource move action.

Normal Response Code(s): 200, 203

Error Response Code(s): 404, 410, others …

A move action helps coordinate states as resources are moved from one tenant to another. Move actions
must be acquired in cases where operators wish to ensure consistency between moves. An operator acquires
a move action by performing a GET on the move action URL of either a specific resource (…/path/to/
resource/action/move) or of an entire tenant (/version/tenantId/action/move). The destination tenant
of the move must be specified in the dest URL parameter. An example request is illustrated below.

Example 3. Get Move Action Request

 GET /v1.0/17776666/action/move?dest=176625343 HTTP/1.1
 Host: service.openstack.com
                            



Draft Multi-Tenant Tenanting in OpenStack Draft

8

Example 4. Get Move Action Response (Full)

 HTTP/1.1 200 Okay
 Date: Mon, 12 Nov 2010 15:55:01 GMT
 Content-Type: application/xml; charset=UTF-8
 ETag: "d8a5179a69519b32de12cad41705edd694790ffc"
                            

<?xml version="1.0" encoding="UTF-8"?>

<move xmlns="http://service.openstack.com/actions"
      dest="176625343">
    <tenants>
        <tenant id="17776666">
            .
            .
            .
        </tenant>
        <tenant id="176625343">
            .
            .
            .
        </tenant>
    </tenants>
    <resources>
        <resource id="1">
            .
            .
            .
        </resource>
        <resource id="2">
            .
            .
            .
        </resource>
        .
        .
        .
    </resources>
</move>

                            

The response to the move action request is service-specific. The purpose of the response is to allow
operators to confirm resource state before a move is requested. Thus the response MUST contain
information about the state of resources and tenants that are affected by the move. An entity tag (Etag)
header MUST be included in the response. The header MUST contain a quoted opaque string that uniquely
identifies the response. In the example above we use a SHA1 digest of the response text. There may be
cases where the number of resources affected by the move is very large. In these cases, the response
SHOULD NOT contain a list of all resources affected, but rather it SHOULD contain a tag that uniquely
identifies the current state of the affected resources. The response SHOULD also contain metadata that is
common to all resources affected by the move. This is illustrated in the example below.



Draft Multi-Tenant Tenanting in OpenStack Draft

9

Example 5. Get Move Action Response (Tagged)

 HTTP/1.1 200 Okay
 Date: Mon, 12 Nov 2010 15:55:01 GMT
 Content-Type: application/xml; charset=UTF-8
 ETag: "50d935685fc4d998e202f44694371875d4dfebb7"
                            

<?xml version="1.0" encoding="UTF-8"?>

<move xmlns="http://service.openstack.com/actions"
      dest="176625343">
    <tenants>
        <tenant id="17776666">
            .
            .
            .
        </tenant>
        <tenant id="176625343">
            .
            .
            .
        </tenant>
    </tenants>
    <resources tag="f152f9be36f69f0b162b32fe2beed8c61b99e69b" 
               size="10000" total-usage="2.5TB" />
</move>

                            

Note that the tag in the content of the message is different from the one supplied via the ETag. The
ETag uniquely identifies the move action response. The tag in the content identifies the state of all of
the resources affected. Conceptually, one can think of it as the sum of all of the ETags of the affected
resources. It is also important to note that a change in the tag will cause the ETag to change.

On success, a request for a move action should return a response code of 200 (Okay) or 203 (Non-
Authoritative Information) if the request is cached. Services should respond with a 404 (Not Found) if the
tenant or resources does not exist. A return code of 410 (Gone) signifies that the tenant has been recently
deleted.

Conditional Move

Verb URI Description

POST /version/tenantId/path/to/resource/action/
move?dest=tenantId

Perform a conditional move operation
on a resource.

POST /version/tenantId/action/
move?dest=tenantId

Perform a conditional move operation
on all resources.

Normal Response Code(s): 200, 203

Error Response Code(s): 404, 410, 412, others …



Draft Multi-Tenant Tenanting in OpenStack Draft

10

Conditional moves work exactly like unconditional move requests except that an If-Match header
should be included containing the ETag of the move action. An example request is illustrated below.

Example 6. Conditional Move Request

 POST /v1.0/17776666/action/move?dest=176625343 HTTP/1.1
 Host: service.openstack.com
 If-Match: "d8a5179a69519b32de12cad41705edd694790ffc"
 Content-Type: application/xml
                            

Here the move should fail with a 412 (Precondition Failed) if any change in state has occurred between
GET request and the POST request.

Questions and Answers
1. Why go through the trouble of obtaining a move action? Why not simply fail a move request if a

resource is in an unmovable state?

If a service can detect an unmovable state then it should certainly fail the move operation. That
said, whether or not a resource is movable depends on the specific deployment. For example, an
operator may have a rule that tenants are only allowed to have 100 resources. The move action
request allows operators to enforce the rule on moves.

References
[1] T Berners-Lee. L Masinter. M McCahill. Uniform Resource Locators (URL).  http://tools.ietf.org/html/rfc1738 .

http://tools.ietf.org/html/rfc1738

	Multi-Tenant Tenanting in OpenStack
	Table of Contents
	Rationale and Goals
	Specification Overview
	Tenant Lifecycle
	Admin API
	Required Operations
	Get Tenant
	Get Tenant Metadata
	Create a tenant
	Remove a tenant

	Optional Operations
	Move a Resource
	Move all Resources
	Ensuring Consistency
	Get a Move Action
	Conditional Move




	Questions and Answers
	References

